
(26) and (27), by introducing additional hypothetical sources to account for heat reflected 
from the corresponding boundary planes. In most cases, the IS semiconductor crystal has 
dimensions (0.5 x 0.5 + 4 x 4).10 -6 m 2 and, therefore, for the calculation of temperature 
fields during pulse microwelding, calculational schemes with one and three hypothetical 
sources are adequate. 

NOTATION 

T, temperature; ro, radius of the heat source; h, crystal thickness; %, thermal conduc- 
tivity; x, y, z, Cartesian coordinates; qo, specific heat flux; a, b, semiaxes of the ellipse; 
dS, elementary area of the ellipse; r, radial variable; ~, heat-transfer coefficient; 8, 
dimensionless temperature; $, X, dimensionless coordinates; Bi, Biot number; ~, emissivity; ~, 
Stefan--Boltzmann constant; To, initial temperature of the medium; k, l, distances from the 
center of the heat source to the crystal boundary planes. 
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SIMULATION OF THE THERMAL STATE OF A BILLET FROM CASTING TO ROLLING 

V. V. Salomatov, A. D. Gorbunov, 
and A. N. Mel'nikov 

UDC 669.4~536.24 

A mathematical model is given for the thermal treatment of a billet for rolling, 
in which the crystallization, cooling, and reheating are considered as stages in 
a single process. 

Very complex effects occur in the heating and cooling of a billet during preparation for 
rolling; the time during which such a billet is suitable for rolling is governed by the size, 
type of mold, grade of steel, time spent in the mold, cooling time after removal from the 
mold, temperature in the heating oven, and so on. Many of these parameters may vary within 
wide limits. The product quality and the throughput are dependent on the parameter values. 

Methods are available for calculating the individual stages in the process, and one can 
use these to calculate the crystallization, cooling, and heating with reasonable precision, 
but only if one has available reasonably reliable data on the initial state for each of the 
stages. 

However, it has been shown [1-4] that division of the preparation into stages cannot 
provide all the necessary information, and it would be best to perform the calculations on 
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Fig. i. Mathematical formulation: I) 
solid; 2) mold; 3) melt. 

the crystallization, cooling, and reheating in terms of a single process. Very few papers 
deal with the process from this viewpoint, and in view of the complexity they are usually 
based on various gross simplifications, which often substantially reduce the resulting accu- 
racy. 

One study [2] deals with the most economical modes of billet heating for hot rolling on 
the assumption that the movement of the heated front is in accordance with Z = Kid , where K i 
is a constant dependent on the conditions of crystallization, cooling in the mold, subsequent 
cooling in air, movement through the heating oven, and so on. 

A major disadvantage of this model is that any change in the conditions, for instance, 
the instant of removal from the mold, will immediately alter the law followed by the crystal- 
lization front. This neglects the fact that thermal processes show considerable lag, and the 
new speed of the front is then not determined by the current conditions, but has to be speci- 
fied in advance. Further, the available evidence indicates that the speed of the front in 
general does not obey the square-root law. 

Electrothermal analogs have also been used [4], but it is clear from another study [7] 
that this treatment is justified only when fairly low accuracy is acceptable and high working 
speed is not necessary. 

A study has been made [5] of the effects of the initial billet temperature on heating 
time; the data on the thermal state of the billet during crystallization were derived from 
experiment, while the heating was calculated, which gave a reasonably full analysis for a 
completely solidified casting, but one which was very difficult to apply to the heating of a 
billet containing a liquid core. Also, complex experiments are required in order to apply 
the method at all. 

Here we use a fuller mathematical model that allows one to consider various styles of 
billet handling in an actual oven, including reheating a billet containing a liquid core, 
which is particularly important in some high-speed processes. 

The following thermal-conduction equation applies to the solidified part of the billet 
(Fig. i) : 

c~(t) p(t) N~(x, g, ~) = div[~(t) grad ll(x, g, ~)] 
0f (i) 

subject to the initial condition 

tx(x, g, O) = ~(x, y). (2)  

We assume that the temperature of the liquid phase is constant at Tcr ; any superheating 
in the liquid can be incorporated by increasing the latent heat of crystallization appropri- 
ately. Then the condition at the mobile boundary takes the form 

%1(t ) atl(z _, T) = pL. Oz(x, g, ~) (3) 
On 8~ ' 

where z(x, y, T) is the position of the phase interface and n is the vector for the normal 
to z, with 

z(x, g, O) -~ zo(x ' g). (4)  

T h e r e  a r e  no h e a t  f l u x e s  t h r o u g h  t h e  s y m m e t r y  p l a n e ,  i . e . ,  

q3=k,(/) Old(O, g,-c) ----0 q~=k~(t) Old(X, O, x) ----0 (5) 
Ox ' ag 
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We assume also that the air-filled gap between the billet and the mold forms instantane- 
ously after a certain time lapse and then remains constant. In that case, the heat transfer 
from the billet to the mold occurs by direct contact before the gap is formed, and by radia- 
tion and convection afterwards, with the inner surface of the mold acting as the external 
medium. When the mold is removed, and when the billet is in the reheating oven, the mode of 
heat transfer remains as before, the only changes being in the heat-transfer coefficient and 
in the parameters of the environment. Therefore, the heat-transfer conditions at the surface 
of the billet may be put as 

q~(j=X~(I).Ot~(A, 9, ~) t~o(l) Ot~f-z '  ~ ,  0<~-~T*, . (6) 

Ox [C[t~(A, y, T)--TI~D[tI*(A,.y, ~)--T~], 

q2(T) = ~a(t ) Oq(x,_ B, ~ -- {[Zo(t) oyB" ~), .0<~ <~* ,  
Oy [C[t~(x, B, ~)--T] + D[ta~(x I B, z)--T*l, (7) 

where C, D, and T, respectively, take the values ~3, o3, t s for z* < �9 < rc, al, o~, t a for 

z c <_ 7 _<Tinand~z, 02, t b for z > Tin 

We solve the thermal-conduction equation to determine the temperature distribution in 
the mold : 

Q(t) po(t) Ot~(x y, ~) = div [?~o(t) grad t~(x, y, ~)] (8) 
0r 

subject to the initial condition 

t~(x, y, O)=f2(x, y), (9) 

and the symmetry condition 

qs(~)=~(t ) Ot2(O, Y, "0 =0,  q~(j=k~(t) Ot2(x O, ~) :0 (i0) 
Ox c)y 

i n  c o n j u n c t i o n  w i t h  b o u n d a r y  c o n d i t i o n s  o f  r a d i a t i o n - - c o n v e c t i o n  t y p e  a t  t h e  o u t e r  s u r f a c e  of  
t he  mold z 

qdG=).,(t)Otz(A+a, Y, "0 a, [t.,(A-!-a, y, r)--lcI'-cg[14(A -5- a, y, ~)--t4~l ( l l )  
= z - z " Ox 

q~(,)=k2(t)Ol2(x, B-:-b, j %[/._,(x, B -- b, T)--lc]i-a.,_[t~(x, B-:-b, ~)--l~]. (12) 
Oy 

The inner surface of the mold receives a heat flux from the billet, so the condition for 
matching the temperature distributions in the billet and mold will be 

.]~._(I) Ot~(A, y, T) =ql, (13) 

c)x 

~2(l) OL.(X, t3, T) = q2, ( 1 4 )  

OF 
where  ql  and q2 a r e  d e f i n e d  by (6) and ( 7 ) ,  r e s p e c t i v e l y .  

It is clear that system (1)-(14) cannot presently be solved analytically, since the con- 
dition (3) alone in the two-dimensional case rules out an exact analytical solution. There- 
fore, the problem was handled numerically. 

In order to approximate (3), the continuous function Z(x, y, T) was replaced by two 
families of net functions Xj k and Yi k, where xjk represents a mobile nodal points correspond- 
ing to the point of intersection of the Z(x, y, T) curve with a coordinate straight line of 
family j at time kT, while Yi k corresponds to the point of intersection of Z(x, y, r) with a 
coordinate straight line of family i. Then the position of the front at any time kT is deter- 
mined by the values of the discrete functions Xj ~ and xik , which are used in approximating (3) 
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Then we have the following equations to determine X k+~ and yk+~ �9 . on the basis that the 
3 z 

temperature near the crystallization front varies only slightly (i.e., any variation in the 
thermophysical parameters may be neglected): 

Tc r __ "k ~,~- ~.. 
X~+'-- k~  l ~ , i - - t g ( n ,  x), (15) -Xj'x -i  pL 

A 
Y~+t=Y~-F Tcr--t~'i . tg(n, 9). (16) 

yl~_jh pL i ty 

The nodes  w i t h i n  the  s o l i d i f i e d  p a r t s ,  where (1) a p p l i e s ,  a r e  s p l i t  up i n t o  t h r e e  f a m i -  
l i e s  ~ ,  ~2, ~3; t he  f i r s t  f a m i l y  cove r s  nodes  r e a s o n a b l y  remote  from the  mob i l e  boundary  
(ones t h a t  do n o t  have a d j a c e n t  mob i l e  nodes)  The immobile  nodes  hav ing  a d j a c e n t  nodes  Xj k 
Yi k a r e  a s s i g n e d  to t he  second r e g i o n ,  w h i l e  nodes  t h a t  t r a n s f e r  to  a new phase  d u r i n g  a t ime 
s t ep  a re  a s s i g n e d  to  the  t h i r d  r e g i o n .  The g r i d  f u n c t i o n  t k+~. in  t he  f i r s t  r e g i o n  i s  d e f i n e d  
by the  e x p l i c i t  e q u a t i o n  1,3 

tk+ l=-t ~, ,@ " ' | / 1  ' ~, i+I i, ]-I tk lk *, i+~ i, 1-I I t~ --tk :X 
,.1 h~ I t  ' 4)~,i " (e : i+1--~ ' . i+, )  + \ 1  4X' ~,,i ( , . i - ,  i . ]  =- 

• ' + "  J -  ' - " J  t 
4%~, i / i ~, i, 

i+I, i ~-I, i t ~ ._tk 
4 ~ ,  1" , i - - l ,  I i ,  ] �9 (17) 

In the second region, we have inexplicit equations, for instance, for points adjoining 
the mobile nodes of the Yi k family [6]: 

~k+.l= i ~ [ 1 
~, I ~ ' ]L 2aT h~ 1)h__y~+l "i.i+l- ]hu__yk+l - -  ~/k+l,/"@t~--l,./ : 

{1 i[i 1 ]i �9 . . . 

2a~ (/+l)hu--Y~+i hv ~ J-yih --Vk-?. " (18) 

The temperature at time instant k + i for points in the third region may be determined 
by assuming that the gradient is linear between the boundary nodal point and the crystalliza- 
tion front, i.e., that the relevant equations are 

[ t~l-1-Tcr ][(i_l)hx_X~+~ ] lk+ 1 _ 
,-, - Tr + ih __X~+l , (19) 

[ ] i, ] cr 
l~+]-l=Tcr + ]hy__y~+ 1 [(J--1)hu--Y~+l]. (20) 

E q u a t i o n s  (18 ) - (20 )  do no t  i n c o r p o r a t e  any change in  t he  t h e r m o p h y s i c a l  p a r a m e t e r s ,  s i nce  
the second and third regions lie reasonably close to the front, where the temperature gradi- 
ent cannot be large, and therefore the thermophysical parameters must be virtually constant. 

The nonlinear boundary conditions of (6) and (7) were realized by iteration on Newton's 
formula, the final form of the formula for (7) being 

tk,~+l__?,~_l ~ [ tk  -lk'~ ] 
__'k ,  ~ , .T  + . , i  - - . , i  [ h~ (t~ t"+"i)TC ("'] 2"+"i) 

+D[(I~ - - t k ' ~ )  ]} { --)~ C D (t] __tk,, } , i n+ l ,  T : 
16 h~: 2 4 ,i n+l,)s (21) 

Then (6) and (7) for T <_ z* correspond to the equations 

t k .+t  k. . lk+l n, I n--I-l,/" 
r/,j" 

ln, /" 

(22) 
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m+t  
tk.+l : ~, , m+1 l . ~ r n  P 

1-~ ~m.~ 

and (5) and (I0), which express the adiabatic conditions at the boundaries, correspond to 

and 

(23) 

tf. _,----t~., ( 2 4 )  

t~1, i=~, i. (25) 
The equations of thermal conduction and the boundary conditions for the mold may be 

simulated in similar fashion. 

An ALGOL-60 program was written to solve this system of equations. 

A BESM-4 computer was used in a series of detailed calculations for 12-ton billets of 
fully or partly solidified steel. These gave the temperature distributions in the billet and 
mold, the course of the crystallization front, the time to complete solidification, the neces- 
sary heating time, and other information. 

Figure 2 shows the temperature at the center and at the surface of the mold for various 
styles of preparation; the calculations show that there is a prominent minimum in the rela- 
tionship between the heating time and the temperature (Fig. 3, which has been observed pre- 
viously in several studies [i, 2, 4]. It is of some practical importance to define the exact 
set of working parameters corresponding to the minimum. As the heating time is a function 
of many variables, one has to examine a considerable number of possibilities in order to de- 
termine the optimal values, which very much hinders the use of electrical or other analogs 
for the purpose [4, 8]. 

Our method employs a fast digital computer, and enabled us to simulate and examine any 
feasible mode of thermal preparation for rolling, which thus can enable one to define the set 
of parameters for any detailed working conditions. 

Also, the calculations define the conditions under which any particular simplifications 
are justified, e.g., one designed to provide approximate analytical relationships. For in- 
stance, it was found from the calculations that, if the billet is nearly of square cross sec- 
tion, the restriction on the second coordinate has no particular effect on the motion of the 
front, while the thickness of the solidified portion does not exceed 40% of the size of the 
billet, which is confirmed by experiment [3]. Subsequently, the solidification accelerates 
substantially, and it may be described in terms of a one-dimensional cylindrical model sub- 
ject to certain assumptions. Similarly, one can estimate the time needed to reach the regu- 
lar cooling stage in the billet or mold. 

These characteristic features provide reasonably sound means of selecting approximate 
analytical relationships for the major stages. 

The calculations by our method agree with other simulation results and with measurements 
[8] on the temperatures during crystallization of actual billets. 

T 

I000 
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2 '~ 6 6 

Fig. 2. Temperatures at surface and cen- 
ter as functions of time in various modes 
of preparation: I) T c = 30 min, T s = 45 
min; 2) 45 and 90 min, respectively; 3) 
60 and 105 min; 4) 120 and 165 min; 5) 
cooling in mold. T in ~ T in h. 
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Fig. 3. Heating time ~h as a function 
of jacket temperature mj. 

NOTATION 

t, temperature; %, thermal conductivity; c, specific heat; p, density; i, ingot; 2, mold; 
x, y, Cartesian coordinates; ~, time; time step; q, heat flux density; L, latent heat of 
crystallization; ts, ta, tb, temperature of internal surface of mold; air, and bath, respec- 
tively; m*, mc, Tin , ~r, times of breakaway, casting removal, start of heating, and readiness 
for rolling; o~, ~I, emissivity in visible region and heat-transfer coefficient for air cool- 
ing; 02, e=, the same for bath heating; 03, ~3, the same for the cooling in the mold; i, j, 
numbers of nodes in a region; k, time step; n, m, numbers of nodes x and y, respectively. 
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